
Lars Kurth
Community Manager, Xen Project

Chairman, Xen Project Advisory Board

Director, Open Source Business Office, Citrix lars_kurth

Principles: Openness, Transparency, Meritocracy

Roles: Maintainers, Committers, Project Lead

Decision Making and Conflict Resolution

Design reviews

Feature Lifecycle and Documentation

Bug reports and Security Issues

Patch contribution workflow

• Anatomy of a good patch series

• Coding style

• Personal repos hosted by Xen Project

• Staging-to-master pushgate and automated testing

Release Manager Role and Release Process

Access to Coverity Scan

Hackathons, Developer meetings, Ad-hoc meetings to resolve issue

Earning “status” in the Xen Project community

Updated

Updated

Updated

Updated

New

Discussed

Updated

Updated

Discussed

www.xenproject.org/governance.html

Openness: The Xen Project is open to all and provides the same
opportunity to all. Everyone participates with the same rules. There are
no rules to exclude any potential contributors which include, of course,
direct competitors in the marketplace.

Transparency: Project discussions, minutes, deliberations, project plans,
plans for new features, and other artifacts are open, public, and easily
accessible.

Meritocracy: The Xen Project is a meritocracy. The more you contribute
the more respect and responsibility you will earn. Leadership roles in
Xen are also merit-based and earned by peer acclaim.

• Maintainers

– Own one or several components in the Xen Project tree

– Reviews and approves changes that affect their components (Acked-by)

– It is a maintainer's prime responsibility to review, comment on, co-ordinate and accept patches
from other community member's.

– It is a maintainers prime responsibility to maintain the design cohesion of their components. Which
implies: quality, maintainability, system properties, …

• Committer

– Maintainer with write access to the source tree

– Acts on the wishes of maintainers (Acked-by)

– Allowed to act as referees should disagreements amongst maintainers arise

• Project Lead

– Public face of project

– Allowed to act as referee should disagreements amongst committers arise

Developer Survey : Improving Xen Project Governance and Conventions

• Part 1 :
Hierarchy of maintainers in the xen.git MAINTAINERs file

• Part 2 :
Trust amongst different stakeholders in the peer review process

• Part 3 :
Other related Governance Issues (Voting Model, Decision Making)

• Results of Phase 1 of the Review Process study

http://xen.markmail.org/message/l4dmauhn5ac32nhj
http://xen.markmail.org/message/6cmkmikx4wnqb2lv
http://xen.markmail.org/message/sk2puw3q6kexu5bb
http://xen.markmail.org/message/arpzzlnuunnyggan

www.xenproject.org/governance.html

Discussion

Several iterations

Disagreement amongst affected maintainers

Informal Conflict Resolution

Ask parties to resolve issue

Refereeing:

Committer(s) to make decisions on

behalf of the community

Still Disagreement amongst affected maintainers

Applies to: Design Discussions, Code Reviews, Documentation, …

If there is consensus amongst all
relevant stake-holders (e.g. via ACKs),
we are done

Last Resort:

Private committer vote (majority

with tie break to avoid stale-mate)

Disagreement amongst committers

If there is consensus amongst all
relevant maintainers, we are done

L
a

z
y
 C

o
n

s
e

n
s
u

s

Results are published by

community manager

If there is consensus amongst all
relevant committers, we are done

Lazy consensus is a mutual consent decision making process between you and
the community that states your default support for a proposal is "yes”, unless you
explicitly say "no".

Restrictions:

• Any “No” statement must be accompanied by an explanation

• Excludes decisions that require a sign-off, e.g. an Acked-by a maintainer on a patch. But,
if there are several maintainers that need to agree, the affected maintainers operate
using Lazy Consensus

• Excludes formal voting, e.g. committer election, governance changes, …

Assumptions:

• Require everyone who cares for the health of the project to watch what is happening, as

it is happening.

The design discussion leading to this point in time was lengthy with some disagreements amongst core developers. It took 2 months and 43 email
exchanges to get to the point below.

The example shows how the proposer prompting the Maintainers for clarification on whether all the issues have been resolved and by doing so, got
to an agreement.

[Contributor]

In this case, if libvirt/XenAPI is trying to query a domain's cache utilization in the system

(say 2 sockets), then it will trigger _two_ such MSR access hypercalls for CPUs in the 2 different

sockets.

If you are okay with this idea, I am going to implement it.

[Maintainer]

I am okay with it, but give it a couple of days before you start so that others can voice their

opinions too. Dom0 may not have a vcpu which is scheduled/schedulable on every socket.

[snip: ... there was another short exchange clarifying a question, which were addressed during the

conversation]

[Contributor]

No more comments on this MSR access hypercall design now, so I assume people are mostly okay with it?

[Another Maintainer]

Yes -- I think everyone who commented before is satisfied with that approach, and anyone who hasn't

commented has had ample opportunity to do so

Maintainers and core developers sometimes hold different opinions regarding architecture,
design or other issues. That is entirely normal. Because such situations can delay progress
and turn away contributors, the project has some mechanisms to resolve this.

Informal:

• Ask the parties that disagree to resolve the disagreement

• Leave some “reasonable” time period to allow the disagreeing parties to come to a
conclusion

• If in doubt, you can ask one of the committers and/or the community manager for advice.

This works in most cases.

In situations when no resolution can be found informally, refereeing can be used. People
with higher “status” in the community can make decisions on behalf of the community.

Example: Two maintainers disagree on a design. You have asked for the issue to be
resolved, but no resolution could be found.

Formal:

• Ask the referee: in this case the committer(s) responsible for the maintainers to resolve
the disagreement

• If committers can’t agree on a way forward, a private formal majority vote amongst
committers can be used to break the dead-lock

• If in doubt, ask the community manager for advice.

• Referees do not always proactively step in and resolve an issue

– Workload : may have missed a disagreement

– Resolving issues is harder for some people than others

• Asking for an issue resolution in public or private?

– Prompting disagreeing parties to resolve an issue publicly is not always easy

– It is OK, to ask a referee or the community manager for advice privately

– However, Transparency and Lazy Consensus require that discussions and
decisions are made in public. This means that

• It is OK to do preparation work to resolve a conflict in private
(e.g. on IRC, a phone call, etc.)

• But, in such a cases, there needs to be a clear statement on the list that shows the
outcome and invites others to provide feedback

A maintainer stepped in to understand and resolve an issue by having a quick conversation
with one party involved: he stated the fact that there was a private discussion, summarized
it and invited others to comment.

[Maintainer]

So XXX and I had a chat about this [the disagreement that came up

in a discussion], and I think we came up with something that would

be do-able. (This is from memory, so XXX please correct me if I

missed anything).

So the situation, as I understand it, is:

...

That should be a good balance -- it's not quite as good as having

as separate daemon, but it's a pretty good compromise.

Thoughts?

Applies to: Proposals related to Development Practices and Processes

Informal Discussion of a Proposal

Possibly several options with an

informal vote on each option to establish

momentum for each option

No clear agreement for a single option
Next step: Proposer makes a formal proposal with one option

Informal or Formal Committer Vote

A single proposal marked [Vote] on a single

concrete proposal

If there is consensus amongst relevant
committers, we are doneC

o
n

s
e

n
s
u

s
 A

p
p

ro
v
a

l

If there is clear consensus amongst all
relevant stake-holders we are done

Last Resort:

Private committer vote (majority with tie

break to avoid stale-mate)

No agreement for a single option
Next step: Proposer asks community manager for resolution

Results are published by

community manager

Voting is done with numbers:

+1 : a positive vote
0 : abstain, have no opinion
-1 : a negative vote

A negative vote should include an alternative proposal or a detailed

explanation of the reasons for the negative vote.

Issues:

A single -1 is essentially a veto and will block any vote, except for a

“last resort” vote. In practice, committers wanted to record that they are

against a proposal without blocking it

Voting is done with numbers:

+2 : agree, but care strongly enough to argue for it
+1 : agree, but don’t care enough to argue for it
0 : abstain, have no opinion
-1 : disagree, but don’t care enough to argue against it
-2 : disagree, but feel strongly enough to argue against it

Only a -2 will stop an agreement.

Note: Although this proposal has wide agreement (see

lists.xenproject.org/archives/html/xen-devel/2015-10/msg01885.html),

a formal vote is required and some details need to be resolved, as we

are thinking to move to a majority based model.

http://lists.xenproject.org/archives/html/xen-devel/2015-10/msg01885.html

Applies to:

• Committer, Project Lead and Release Manager Elections

• Governance changes (for governance published on xenproject.org)

Issues:

Recently, we have conducted a survey, which highlighted that the

decision making portions of the governance are not very clear and there

is space to streamline the process. We are working on a proposal to

clarify and streamline decision making.

Undocumented Convention

The Project has no formal requirement to submit designs before a patch

BUT:

• Designs are welcome, for complex designs

• Sometimes a fully fledged design is not necessary : a set of questions,
can iteratively lead a design

• If in doubt, as to whether a design is necessary ask the community for
input

See “cpufreq implementation for OMAP under xen hypervisor”
[Contributor]

Hi to all.

I want to implement an cpufreq support for OMAP processors in xen. I use the

Linux kernel as Dom0.

I know that there are 2 implementations of cpufreq: Domain0 based cpufreq and

Hypervisor based cpufreq. But those implementations are made only for x86

architecture, not for the ARM architecture.

Could anybody give me an advice how to do that?

After an initial answer, the proposal was iteratively improved leading to a design.

The design turned out to be more complex than anticipated because of dependencies with
Linux and architectural differences between x86 and ARM.

http://xen.markmail.org/message/kqifcxibuuwyxnhb?q=cpufreq+implementation+for+OMAP+under+xen+hypervisor+date:201408+&page=1

See “FIFO-based event channel ABI design (draft B)”

• This was an example of a fully fledged detailed design.

• Note that there was a version A beforehand – a precursor of draft B

• The design was competing with an entirely different design by Wei Liu, for which code already existed
– some of which had been posted and reviewed

The community had to make a decision, which design to go for.

• It turned out that a prototype could be put together relatively quickly and an RFC followed.

• This then led to a community decision to go for the FIFO-based event channel
(with the agreement of Wei Liu)

If you compare the amount of questions, these were similar to the previous example, but took
considerably less elapsed time to review.

This was mainly due to the fact that most developers were within one time-zone and that the design was
well thought through.

http://xen.markmail.org/message/cineqg7m3icumaim?q=FIFO-based+event+channel+ABI+design+(draft+B)+date:200310-201411+&page=1
http://xen.markmail.org/search/?q=FIFO-based+event+channel+ABI+design+(draft+A)#query:FIFO-based event channel ABI design (draft A) date:201302 +page:1+mid:6stprp5f4pjiashc+state:results

There is no right or wrong approach

A more iterative design review (based on a problem
or idea which is not fully defined),

• may be less predictable and

• depends on the quality of communication between
proposer and reviewers

A fully fledged design,

• may require significant re-work if there are issues
with the use-cases, wrong assumptions, etc.

Vinovyn @ Flickr

Example: FIFO-based event channel ABI design

• The FIFO-based event channel ABI design had a further 6 revisions
(up to draft H)

• It was kept up-to-date with the implementation. See

– lists.xenproject.org/archives/html/xen-devel/2013-11/msg01414.html referring to

– xenbits.xen.org/people/dvrabel/event-channels-H.pdf

• The design doc now serves as detailed documentation for the ABI.

• Recommended Location for Feature Specs and Docs

– xen.git @ docs/specs

– xen.git @ docs/features

http://lists.xenproject.org/archives/html/xen-devel/2013-11/msg01414.html
http://xenbits.xen.org/people/dvrabel/event-channels-H.pdf
http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=docs/specs
http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=docs/features

Proposal
@http://lists.xenproject.org/archives/html/xen-
devel/2015-11/msg00609.html

http://lists.xenproject.org/archives/html/xen-devel/2015-11/msg00609.html

Clearly establish criteria for: Feature / Platform is

– fully implemented, maintained, tested, stable (APIs) & documented

Based on above criteria, award support status

– Preview, Experimental, Complete (new), Supported (new), Supported-Legacy-
Stable (the old Supported) and Deprecated

Which in effect controls

– How bugs and issues are handled

– Whether regressions and blockers block Xen Releases

– Whether security issues would be handled by the security team.

Document Feature Status in xen.git @ docs/features

http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=docs/features

wiki.xenproject.org/wiki/Reporting_Bugs_agains
t_Xen_Project

Guilherme Tavares @ Flickr

Raise Issue or [BUG]:

Description of issue with supporting

information, such as environments,

logs, etc. to xen-devel or xen-users

IMPORTANT: suspected security

vulnerabilities are reported to

security@xenproject.org only

Clarification:

Community may ask some more questions to clarify

the issue and determine whether the issue in question

is a bug or not.

More Information:

Raiser of bug provides more information

Fixing:

Community member fixes the bug using the

contribution workflow. Once the fix is committed and

the bug confirmed fixed the maintainer closes

the bugClosed

Tracked bug:

Maintainer adds bug to bugs.xenproject.org

Maintainer

confirms issue as

bug that needs to

be tracked

mailto:security@xenproject.org

www.xenproject.org/security-policy.html

Guilherme Tavares @ Flickr

Raise Security Issue:

Description of issue with supporting

information, such as environments,

logs, etc. security@xenproject.org

only

Xen Project Security Team

handles the issue

Full Disclosure:

Security team announces security

issue publicly at disclosure date

Pre-disclosure:

Members of pre-disclosure list are

notified of issues and updates

www.xenproject.org/security-policy.html

Guilherme Tavares @ Flickr

Credit for this section of the talk: George Dunlap

A X

R: Vulnerability Reported

T: Triage

P: Vulnerability Pre-disclosed

A: Vulnerability Announced

F: Fix Available

X: Fix Deployed

Vulnerability is known by the reporter and the security team

Note: It may also be known and used by black hats

Vulnerability is known about by a privileged and small group of users

Vulnerability is known publicly

Description, CVE

allocation, …

Pre-disclosure period

Make sure that downstream projects and products (e.g. distros) can

package and test the fix in their environment

Allow service providers to start planning an upgrade (at scale this can take a week)

Allow service providers to deploy an upgrade before the embargo completes

(specified in each advisory whether applicable)

R

Patch/fix creation

and validation

FT P

1 week 2 weeks

• Encourage people to report bugs responsibly

• Minimize time that users are vulnerable to attack

• Maintain trust in the community

Timing of disclosure

• Honor the wishes of the reporter

• Suggest time period: 1 week to fix, 2 weeks pre-disclosure

Pre-disclosure list

• Open to any “genuine provider” of software / service using Xen

• Distinguished Community Members

• Read vulnerability reports

– Determine if it is a vulnerability

– Come up with a fix (bringing in others if necessary)

– Coordinate disclosure

• Manage predisclosure list according to policy

Raise Security Issue:

Description of issue with supporting

information, such as environments,

logs, etc. security@xenproject.org

only

Clarification:

Security team may ask some more questions to

clarify the issue, determine a work-around, prepare

a fix and agree a disclosure timetable with the

raiser of the issue

More Information:

Raiser of issue, members of pre-disclosure list

and provide more information on request

Full Disclosure:

Security team announces security

issue publicly at disclosure date

Pre-disclosure:

Members of pre-disclosure list are

notified of issues and updates

Fix Preparation and Testing:

Security team prepares fix,

pre-disclosure announcement, etc.

Pre-disclosure Testing:

Members of pre-disclosure list test

fix and provide feedback if

appropriate

• …doesn’t honor the wishes of the reporter?

– If the reporter doesn’t trust the process, they may go with full
disclosure

• …favors some group in the community (aka is not impartial)?

– Massive loss of trust in the Xen Project

– Possible legal repercussions for anti-trust violations

Open Source Security Practices on Linux.com

– Part 1: A Cloud Security Introduction

– Part 2: Containers vs. Hypervisors - Protecting Your Attack Surface

– Part 3 and 4 will be published shortly

Also of interest:

– eWeek: How Xen Manages Security

– Are Today's FOSS Security Practices Robust Enough in the Cloud Era?

http://www.linux.com/news/enterprise/systems-management/863439-open-source-security-process-part-1-a-cloud-security-introduction
http://www.linux.com/news/enterprise/systems-management/864824-open-source-security-process-part-2-containers-vs-hypervisors-protecting-your-attack-surface
http://www.eweek.com/security/how-xen-manages-security-disclosure.html
http://events.linuxfoundation.org/sites/events/files/slides/Are+Today's+FOSS+Security+Practices+Robust+Enough+in+the+Cloud+Era+Final_1.pdf

